Hashing Based Hierarchical Feature Representation for Hyperspectral Imagery Classification
نویسندگان
چکیده
Integrating spectral and spatial information is proved effective in improving the accuracy of hyperspectral imagery classification. In recent studies, two kinds of approaches are widely investigated: (1) developing a multiple feature fusion (MFF) strategy; and (2) designing a powerful spectral-spatial feature extraction (FE) algorithm. In this paper, we combine the advantages of MFF and FE, and propose an ensemble based feature representation method for hyperspectral imagery classification, which aims at generating a hierarchical feature representation for the original hyperspectral data. The proposed method is composed of three cascaded layers: firstly, multiple features, including local, global and spectral, are extracted from the hyperspectral data. Next, a new hashing based feature representation method is proposed and conducted on the features obtained in the first layer. Finally, a simple but efficient extreme learning machine classifier is employed to get the classification results. To some extent, the proposed method is a combination of MFF and FE: instead of feature fusion or single feature extraction, we use an ensemble strategy to provide a hierarchical feature representation for the hyperspectral data. In the experiments, we select two popular and one challenging hyperspectral data sets for evaluation, and six recently proposed methods are compared. The proposed method achieves respectively 89.55%, 99.36% and 77.90% overall accuracies in the three data sets with 20 training samples per class. The results prove that the performance of the proposed method is superior to some MFF and FE based ones.
منابع مشابه
Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملWhen Low Rank Representation Based Hyperspectral Imagery Classification Meets Segmented Stacked Denoising Auto-Encoder Based Spatial-Spectral Feature
When confronted with limited labelled samples, most studies adopt an unsupervised feature learning scheme and incorporate the extracted features into a traditional classifier (e.g., support vector machine, SVM) to deal with hyperspectral imagery classification. However, these methods have limitations in generalizing well in challenging cases due to the limited representative capacity of the sha...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017